1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
|
""" # @File : 301_regression.py # @Time : # @Author : # @version :python 3.9 # @Software : PyCharm # @Description: """
import torch import torch.nn.functional as F import matplotlib.pyplot as plt import matplotlib.animation as animation import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + 0.2 * torch.rand(x.size())
class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear(n_feature, n_hidden) self.predict = torch.nn.Linear(n_hidden, n_output)
def forward(self, x): x = F.relu(self.hidden(x)) x = self.predict(x) return x
net = Net(n_feature=1, n_hidden=10, n_output=1) print(net)
optimizer = torch.optim.SGD(net.parameters(), lr=0.2)
loss_func = torch.nn.MSELoss() plt.ion()
for t in range(200): prediction = net(x) loss = loss_func(prediction, y) optimizer.zero_grad() loss.backward() optimizer.step()
if t % 2 == 0: plt.cla() plt.scatter(x.data.numpy(), y.data.numpy()) plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'}) plt.savefig(f'./img/regression_{t}.jpg')
|